int main( int argc, char* argv[] )
{
if( argc < 3 )
{
std::cerr << "Usage: "<< std::endl;
std::cerr << argv[0];
std::cerr << " <InputFileName> <OutputFileName>";
std::cerr << " [Sigma]";
std::cerr << std::endl;
return EXIT_FAILURE;
}
const char * inputFileName = argv[1];
const char * outputFileName = argv[2];
double sigmaValue = 0.5;
if( argc > 3 )
{
sigmaValue = atof( argv[3] );
}
const unsigned int Dimension = 3;
typedef float PixelType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( inputFileName );
PadFilterType::Pointer padFilter = PadFilterType::New();
padFilter->SetInput( reader->GetOutput() );
PadFilterType::SizeType padding;
padding[0] = 0;
padding[1] = 2;
padding[2] = 6;
padFilter->SetPadUpperBound( padding );
typedef ForwardFFTFilterType::OutputImageType ComplexImageType;
ForwardFFTFilterType::Pointer forwardFFTFilter = ForwardFFTFilterType::New();
forwardFFTFilter->SetInput( padFilter->GetOutput() );
try
{
forwardFFTFilter->UpdateOutputInformation();
}
{
std::cerr << "Error: " << error << std::endl;
return EXIT_FAILURE;
}
GaussianSourceType::Pointer gaussianSource = GaussianSourceType::New();
gaussianSource->SetNormalized( true );
ComplexImageType::ConstPointer transformedInput
= forwardFFTFilter->GetOutput();
const ComplexImageType::RegionType inputRegion(
transformedInput->GetLargestPossibleRegion() );
const ComplexImageType::SizeType inputSize
= inputRegion.GetSize();
const ComplexImageType::SpacingType inputSpacing =
transformedInput->GetSpacing();
const ComplexImageType::PointType inputOrigin =
transformedInput->GetOrigin();
const ComplexImageType::DirectionType inputDirection =
transformedInput->GetDirection();
gaussianSource->SetSize( inputSize );
gaussianSource->SetSpacing( inputSpacing );
gaussianSource->SetOrigin( inputOrigin );
gaussianSource->SetDirection( inputDirection );
GaussianSourceType::ArrayType sigma;
GaussianSourceType::PointType mean;
sigma.Fill( sigmaValue );
for( unsigned int ii = 0; ii < Dimension; ++ii )
{
const double halfLength = inputSize[ii] * inputSpacing[ii] / 2.0;
sigma[ii] *= halfLength;
mean[ii] = inputOrigin[ii] + halfLength;
}
mean = inputDirection * mean;
gaussianSource->SetSigma( sigma );
gaussianSource->SetMean( mean );
FFTShiftFilterType::Pointer fftShiftFilter = FFTShiftFilterType::New();
fftShiftFilter->SetInput( gaussianSource->GetOutput() );
RealImageType,
ComplexImageType >
MultiplyFilterType;
MultiplyFilterType::Pointer multiplyFilter = MultiplyFilterType::New();
multiplyFilter->SetInput1( forwardFFTFilter->GetOutput() );
multiplyFilter->SetInput2( fftShiftFilter->GetOutput() );
InverseFilterType;
InverseFilterType::Pointer inverseFFTFilter = InverseFilterType::New();
inverseFFTFilter->SetInput( multiplyFilter->GetOutput() );
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( outputFileName );
writer->SetInput( inverseFFTFilter->GetOutput() );
try
{
writer->Update();
}
{
std::cerr << "Error: " << error << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}